Start from the given complex number
8−2i5−3i
Convert the numerator
r1=√82+(−2)2=√68
θ1=tan−1(−28)=tan−1(−14)
then
8−2i=√68[cos(tan−1(−14))+isin(tan−1(−14))]
Convert the denominator
r2=√52+(−3)2=√34
θ2=tan−1(−35)=tan−1(−35)
then
5−3i=√34[cos(tan−1(−35))+isin(tan−1(−35))]
Let us divide now, from the given with the equivalent
8−2i5−3i=√68[cos(tan−1(−14))+isin(tan−1(−14))]√34[cos(tan−1(−35))+isin(tan−1(−35))]
Divide using the following formula
(r1r2)⋅[cos(θ1−θ2)+isin(θ1−θ2)]
8−2i5−3i=√6834[cos(tan−1(−14)−tan−1(−35))+isin(tan−1(−14)−tan−1(−35))]
Take note: that
tan(θ1−θ2)=tanθ1−tanθ21+tanθ1⋅tanθ2=−14−(−35)1+(−14)⋅(−35)
tan(θ1−θ2)=723
θ1−θ2=tan−1(723)
and
8−2i5−3i=√2(cos(tan−1(723))+isin(tan−1(723))
Have a nice day!!!.