How do you divide 82i53i in trigonometric form?

1 Answer

2(cos(tan1(723))+isin(tan1(723)) OR

2(cos(16.9275)+isin(16.9275))

Explanation:

Start from the given complex number

82i53i

Convert the numerator

r1=82+(2)2=68

θ1=tan1(28)=tan1(14)

then

82i=68[cos(tan1(14))+isin(tan1(14))]

Convert the denominator

r2=52+(3)2=34

θ2=tan1(35)=tan1(35)

then

53i=34[cos(tan1(35))+isin(tan1(35))]

Let us divide now, from the given with the equivalent

82i53i=68[cos(tan1(14))+isin(tan1(14))]34[cos(tan1(35))+isin(tan1(35))]

Divide using the following formula

(r1r2)[cos(θ1θ2)+isin(θ1θ2)]

82i53i=6834[cos(tan1(14)tan1(35))+isin(tan1(14)tan1(35))]

Take note: that
tan(θ1θ2)=tanθ1tanθ21+tanθ1tanθ2=14(35)1+(14)(35)

tan(θ1θ2)=723

θ1θ2=tan1(723)

and

82i53i=2(cos(tan1(723))+isin(tan1(723))

Have a nice day!!!.