How do you divide 8+7i15i in trigonometric form?

1 Answer
Jun 15, 2018

2.08(0.5014+i0.787)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=8+i7,z2=1i5

r1=82+72=113

θ1=arctan(76)=49.4

r2=12+52=26

θ2=arctan(51)=281.31, IV Quadrant

z1z2=11326(cos(49.4281.31)+isin(49.4281.31)

2.08(0.5014+i0.787)