How do you divide 8i+2i+5 in trigonometric form?

1 Answer
Jan 28, 2016

113+2113i

Explanation:

8i+2i+5
=2+8i5i
=(2+8i)(5+i)(5i)(5+i)
=10+40i+2i+8i225i2
=10+42i+8(1)25(1) [as, i2=(21)2=1]
=10+42i825+1
=2+42i26
=2(1+21i)2.13
=1+21i13
=113+2113i