How do you divide 9+2i56i in trigonometric form?

1 Answer
Jun 25, 2018

9+2i56i=1.18(0.611+i0.7917)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=9+2i,z2=56i

r1=92+22=85

θ1=tan1(29)=12.53 I Quadrant

r2=52+(67)2=61

θ2=tan1(65)=39.81=320.19, IV Quadrant

z1z2=8561(cos(12.53320.19)+isin(12.53320.19))

9+2i56i=1.18(0.611+i0.7917)