How do you divide 9+2i5+i in trigonometric form?

1 Answer
Aug 14, 2018

8526(cos1.22o+isin1.22o)

Explanation:

Use eiθ=cosθ+isinθ

9+2i5+i

=aeiαbeiβ=(ab)(ei(αβ)),

#= a/b ( cos ( alpha - beta) + i sin ( alpha - beta )

where

a=92+22=85,

b=52+1=26,

α=arccos(9a) and

β=arccos(5b).

Answer;

9+2i5+i

=8526(cos(arccos(985)arccos(526))

+isin(arccos(985)arccos(526))

=8526(cos(12.53o11.31o)

+isin(12.53o11.31o))

=8526(cos1.22o+isin1.22o)

This is very very close to the value

1/26 ( 47 + i )