Rewrite 9i-2 as -2+9i. Now square and the numbers -2 and 9, which would be 85. Its square root is√85. Multiply and divide the expression -2 +9i with √85 as follows:
√85(−2√85+i9√85)
If θ is some angle then let cosθ=−2√85andsinθ=9√85
Thus −2+9i=√85(cosθ+isinθ)
Like wise -5i +2 would be 2 -5i =√29(2√29−i5√29)
If ϕ is some angle, then let cosϕ=2√29andsinϕ=−5√29
Thus 2−5i=√29(cosϕ−sinϕ)
9i−2−5i+2=√8529cosθ+isinθcosϕ−isinϕ=√8529eiθe−iϕ=√8529ei(θ+ϕ)
=√8529(cos(θ+ϕ)+isin(θ+ϕ))
=√8529[(cosθcosϕ−sinθsinϕ)+i(sinθcosϕ+cosθsinϕ)]
=√8529[−2√85⋅2√29−9√85⋅−5√29+i(9√85⋅2√29+−2√85⋅−5√29)]
√8529(41√85√29+i28√85√29)
=129(41+28i)