How do you divide 9i25i+2 in trigonometric form?

1 Answer
Dec 20, 2016

=129(41+8i)

Explanation:

Rewrite 9i-2 as -2+9i. Now square and the numbers -2 and 9, which would be 85. Its square root is85. Multiply and divide the expression -2 +9i with 85 as follows:

85(285+i985)

If θ is some angle then let cosθ=285andsinθ=985

Thus 2+9i=85(cosθ+isinθ)

Like wise -5i +2 would be 2 -5i =29(229i529)

If ϕ is some angle, then let cosϕ=229andsinϕ=529

Thus 25i=29(cosϕsinϕ)

9i25i+2=8529cosθ+isinθcosϕisinϕ=8529eiθeiϕ=8529ei(θ+ϕ)

=8529(cos(θ+ϕ)+isin(θ+ϕ))

=8529[(cosθcosϕsinθsinϕ)+i(sinθcosϕ+cosθsinϕ)]

=8529[285229985529+i(985229+285529)]

8529(418529+i288529)
=129(41+28i)