z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = 1 - i, z_2 = -7 + i 2z1=1−i,z2=−7+i2
r_1 = sqrt(1^2 + 1^2) = sqrt 2r1=√12+12=√2
theta_1 = tan ^ (-1) (-1/1) = tan *-1 (-1) = -45 ^@ = 315^@, " IV Quadrant"θ1=tan−1(−11)=tan⋅−1(−1)=−45∘=315∘, IV Quadrant
r_2 = sqrt((-7)^2 + (2)^2) = sqrt 53r2=√(−7)2+(2)2=√53
theta_2 = tan ^-1 (2/ -7) = -15.95^@ = 164.05^@, " II Quadrant"θ2=tan−1(2−7)=−15.95∘=164.05∘, II Quadrant
z_1 / z_2 = sqrt(2/53) (cos (315- 164.05) - i sin (315 - 164.05))z1z2=√253(cos(315−164.05)−isin(315−164.05))
color(magenta)(=> 0.1943 (- 0.8742 - i 0.4856)⇒0.1943(−0.8742−i0.4856)