How do you divide ( -i+1) / (2i -7 )i+12i7 in trigonometric form?

1 Answer
Jun 24, 2018

color(magenta)(=> 0.1943 ( -0.8742 - i 0.4856)0.1943(0.8742i0.4856)

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = 1 - i, z_2 = -7 + i 2z1=1i,z2=7+i2

r_1 = sqrt(1^2 + 1^2) = sqrt 2r1=12+12=2

theta_1 = tan ^ (-1) (-1/1) = tan *-1 (-1) = -45 ^@ = 315^@, " IV Quadrant"θ1=tan1(11)=tan1(1)=45=315, IV Quadrant

r_2 = sqrt((-7)^2 + (2)^2) = sqrt 53r2=(7)2+(2)2=53

theta_2 = tan ^-1 (2/ -7) = -15.95^@ = 164.05^@, " II Quadrant"θ2=tan1(27)=15.95=164.05, II Quadrant

z_1 / z_2 = sqrt(2/53) (cos (315- 164.05) - i sin (315 - 164.05))z1z2=253(cos(315164.05)isin(315164.05))

color(magenta)(=> 0.1943 (- 0.8742 - i 0.4856)0.1943(0.8742i0.4856)