z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = -1 + i, z_2 = 10 - iz1=−1+i,z2=10−i
r_1 = sqrt(-1^2 + 1^2)^2) = sqrt 2r1=√−12+122)=√2
theta_1 = tan ^-1 (1/ -1) 135^@ , " II Quadrant"θ1=tan−1(1−1)135∘, II Quadrant
r_2 = sqrt(10^2 + (-1)^2) = sqrt 101r2=√102+(−1)2=√101
theta_2 = tan ^-1 (-1/ 10) ~~ 354.29^@, " IV Quadrant"θ2=tan−1(−110)≈354.29∘, IV Quadrant
z_1 / z_2 = sqrt(2 / 101) (cos (135 - 354.29) + i sin (135 - 354.29))z1z2=√2101(cos(135−354.29)+isin(135−354.29))
color(indigo)(=> -0.1089 + 0.0891 i, " II Quadrant"⇒−0.1089+0.0891i, II Quadrant