How do you divide ( i-1) / (-i +10 )i1i+10 in trigonometric form?

1 Answer
Jul 28, 2018

color(indigo)(=> -0.1089 + 0.0891 i, " II Quadrant"0.1089+0.0891i, II Quadrant

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = -1 + i, z_2 = 10 - iz1=1+i,z2=10i

r_1 = sqrt(-1^2 + 1^2)^2) = sqrt 2r1=12+122)=2

theta_1 = tan ^-1 (1/ -1) 135^@ , " II Quadrant"θ1=tan1(11)135, II Quadrant

r_2 = sqrt(10^2 + (-1)^2) = sqrt 101r2=102+(1)2=101

theta_2 = tan ^-1 (-1/ 10) ~~ 354.29^@, " IV Quadrant"θ2=tan1(110)354.29, IV Quadrant

z_1 / z_2 = sqrt(2 / 101) (cos (135 - 354.29) + i sin (135 - 354.29))z1z2=2101(cos(135354.29)+isin(135354.29))

color(indigo)(=> -0.1089 + 0.0891 i, " II Quadrant"0.1089+0.0891i, II Quadrant