How do you divide (i+12) / (9i-10) in trigonometric form?

1 Answer
Apr 3, 2017

Use (r_1(cos(theta_1)+isin(theta_1)))/(r_2(cos(theta_2)+isin(theta_2))) = r_1/r_2(cos(theta_1-theta_2)+isin(theta_1-theta_2))

Explanation:

Compute r_1:

r_1 = sqrt(12^2+1^2)

r_1 = sqrt(145)

Compute theta_1

theta_1 = tan^-1(1/12)

Compute r_2:

r_2 = sqrt(-10^2+9^2)

r_2 = sqrt(181)

Compute theta_2 (second quadrant)

theta_2 = tan^-1(9/-10)+pi

The resulting division is:

sqrt(145/181)(cos(tan^-1(1/12)-tan^-1(9/-10)-pi)+isin(tan^-1(1/12)-tan^-1(9/-10)-pi))