How do you divide i+22i+4 in trigonometric form?

2 Answers
Apr 28, 2016

i+22i+4=12(cosθ+isinθ), where θ=tan1(43)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z1=r1(cosα+isinα) and z2=r2(cosβ+isinβ)

Here, if two complex numbers are a1+ib1 and a2+ib2 r1=a21+b21, r2=a22+b22 and α=tan1(b1a1), β=tan1(b2a2)

Their division leads us to

{r1r2}{cosα+isinαcosβ+isinβ} or

{r1r2}{cosα+isinαcosβ+isinβ×cosβisinβcosβisinβ}

(r1r2)(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)(cos2β+sin2β) or

(r1r2)(cos(αβ)+isin(αβ)) or

z1z2 is given by (r1r2,(αβ))

So for division complex number z1 by z2 , take new angle as (αβ) and modulus the ratio r1r2 of the modulus of two numbers.

Here i+2 can be written as r1(cosα+isinα) where r1=22+(1)2=5 and α=tan1(12)

and 2i+4 can be written as r2(cosβ+isinβ) where r2=42+22=20=25 and β=tan1(24)=tan1(12)

and z1z2=525(cosθ+isinθ), where θ=αβ

Hence, tanθ=tan(αβ)=tanαtanβ1+tanαtanβ=(12)(12)1+(12)×(12)=134=43.

Hence, i+22i+4=12(cosθ+isinθ), where θ=tan1(43)

Jun 30, 2016

i+22i+4=12(cosθ+sinθ) ,where θ=tan1(43)

Explanation:

i+22i+4

=12(2i)(2i)(2+i)(2i)

=1222+i222i22i2

=12414i4(1)

=110(34i)

Now 32+42=5,So

The given expression

=12(3545i)

Now if we take 35=cosθ and 45=sinθ
i.e.tanθ=43
then we can write

i+22i+4=12(cosθ+sinθ) ,where θ=tan1(43)