How do you divide i23i+3 in trigonometric form?

1 Answer
Jun 24, 2018

0.527(0.9487+i0.3112)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=2i,z2=3+i3

r1=22+12=5

θ1=tan1(12)=tan1(12)=26.57=206.57, III Quadrant

r2=32+32=18

θ2=tan33=tan1(1)=45

z1z2=58(cos(206.5745)+isin(206.5745))

0.527(0.9487+i0.3112)