How do you divide ( i+2) / (7i +3)i+27i+3 in trigonometric form?

1 Answer
Jan 5, 2018

sqrt(290)/58(cos(40.24)-isin(40.24))29058(cos(40.24)isin(40.24))

Explanation:

For a complex number z=a+biz=a+bi, we can rewrite it in the form z=r(costheta+isintheta)z=r(cosθ+isinθ), where r=sqrt(a^2+b^2)r=a2+b2 and theta=tan^(-1)(b/a)θ=tan1(ba)

z_1=2+iz1=2+i
r_1=sqrt(2^2+1^2)=sqrt(5)r1=22+12=5
theta_1=tan^(-1)(1/2)θ1=tan1(12)
z_1=sqrt(5)(cos(tan^(-1)(1/2))+isin(tan^(-1)(1/2))z1=5(cos(tan1(12))+isin(tan1(12))

z_2=3+7iz2=3+7i
r_2=sqrt(3^2+7^2)=sqrt(58)r2=32+72=58
theta_2=tan^(-1)(7/3)θ2=tan1(73)
z_2=sqrt(5)(cos(tan^(-1)(7/3))+isin(tan^(-1)(7/3))z2=5(cos(tan1(73))+isin(tan1(73))

z_1/z_2=r_1/r_2(cos(theta_1-theta_2)+isin(theta_1-theta_2))z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))

z_1/z_2=sqrt(5)/sqrt(58)(cos(tan^(-1)(1/2)-tan^(-1)(7/3))+isin(tan^(-1)(1/2)-tan^(-1)(7/3)))z1z2=558(cos(tan1(12)tan1(73))+isin(tan1(12)tan1(73)))
~~sqrt(290)/58(cos(-40.24)+isin(-40.24))29058(cos(40.24)+isin(40.24))

Since cos(x)=cos(-x)cos(x)=cos(x) and sin(-x)=-sin(x)sin(x)=sin(x)

=sqrt(290)/58(cos(40.24)-isin(40.24))=29058(cos(40.24)isin(40.24))