How do you divide i+29i+14 in trigonometric form?

1 Answer
Apr 19, 2018

0.1340.015i

Explanation:

For a complex number z=a+bi it can be represented as z=r(cosθ+isinθ) where r=a2+b2 and θ=tan1(ba)

2+i14+9i=22+12(cos(tan1(12))+isin(tan1(12)))142+92(cos(tan1(914))+isin(tan1(914)))5(cos(0.46)+isin(0.46))277(cos(0.57)+isin(0.57))

Given z1=r1(cosθ1+isinθ1) and z2=r2(cosθ2+isinθ2), z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))

z1z2=5277(cos(0.460.57)+isin(0.460.57))=1385277(cos(0.11)+isin(0.11))1385277(0.990.11i)0.1340.015i

Proof:
2+i14+9i149i149i=284i+9142+92=374i2770.1340.014i