To divide (2 + i) / (4 + i9)2+i4+i9 using trigonometric form.
z_1 = (2 + i), z_2 = (4+ i9)z1=(2+i),z2=(4+i9)
r_1 = sqrt(2^2 + 1^2) = sqrt5r1=√22+12=√5
r_2 = sqrt(9^2 + 4^2) = sqrt97r2=√92+42=√97
theta_1 = arctan (1/2) = 26.57^@θ1=arctan(12)=26.57∘
Theta_2 = arctan(9/4) = 66.06^@
r_1 / r_2 = sqrt 5 * / sqrt 97 ~~ 0.227
z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))
z_1 / z_2 = (0.227) * (cos (26.57 - 66.06 ) + i sin (26.57 - 66.06 ))
z_1 / z_2 = 0.227 * (cos (-39.49) + i sin (-39.49)) = 0.227 (0.772 - i 0.636)
color(blue)((2 + i) / (4 + i9) = 0.175 - i 0.144