How do you divide (i+2) / (9i+4)i+29i+4 in trigonometric form?

1 Answer

color(blue)((2 + i) / (4 + i9) = 0.175 - i 0.1442+i4+i9=0.175i0.144

Explanation:

To divide (2 + i) / (4 + i9)2+i4+i9 using trigonometric form.

z_1 = (2 + i), z_2 = (4+ i9)z1=(2+i),z2=(4+i9)

r_1 = sqrt(2^2 + 1^2) = sqrt5r1=22+12=5

r_2 = sqrt(9^2 + 4^2) = sqrt97r2=92+42=97

theta_1 = arctan (1/2) = 26.57^@θ1=arctan(12)=26.57

Theta_2 = arctan(9/4) = 66.06^@

r_1 / r_2 = sqrt 5 * / sqrt 97 ~~ 0.227

z_1 / z_2 = (r_1 / r_2) * (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))

z_1 / z_2 = (0.227) * (cos (26.57 - 66.06 ) + i sin (26.57 - 66.06 ))

z_1 / z_2 = 0.227 * (cos (-39.49) + i sin (-39.49)) = 0.227 (0.772 - i 0.636)

color(blue)((2 + i) / (4 + i9) = 0.175 - i 0.144