How do you divide ( -i+2) / (i +4 )i+2i+4 in trigonometric form?

1 Answer
Oct 21, 2016

= 1/ (17) (7 - 6 i)=117(76i)

Explanation:

In trig form we have

(R_1 e^(i theta_1))/(R_2 e^(i theta_2))R1eiθ1R2eiθ2

= (R_1)/(R_2) e^(i (theta_1- theta_2))=R1R2ei(θ1θ2)

R_1 = sqrt ( (2)^2 + (-1)^2) = sqrt 5R1=(2)2+(1)2=5

R_2 = sqrt (4^2 + 1^2) = sqrt 17R2=42+12=17

tan theta_1 = - 1/2tanθ1=12

tan theta_2 = 1/4tanθ2=14

From
tan(alpha-beta) = (tanalpha-tanbeta)/(1+tanalphatanbeta)tan(αβ)=tanαtanβ1+tanαtanβ

tan (theta_1 - theta_2) =( (-1/2) - 1/4 ) / ( 1 + (-1/2)1/4 ) = - 6/7tan(θ1θ2)=(12)141+(12)14=67

Which means that cos (theta_1 - theta_2) = 7 / sqrt 85cos(θ1θ2)=785 and sin (theta_1 - theta_2) = -6 / sqrt 85sin(θ1θ2)=685

So

(R_1 e^(i theta_1))/(R_2 e^(i theta_2))R1eiθ1R2eiθ2

= (sqrt 5)/(sqrt 17) e^(i (arctan -6/7))=517ei(arctan67)

= (sqrt 5)/(sqrt 17) ( 7 / sqrt 85 - i 6 / sqrt 85 ) =517(785i685)

= 1/ (17) (7 - 6 i)=117(76i)

It's a lot simpler by finding the complex conjugate of the denominator d^prime and multiply the whole thing by the by (d^\prime) / (d^prime). As follows

(2 - i)/(4 + i) * (4 - i)/(4 - i)

= (8 - 2i - 4 i -1)/(16 - 4i + 4 i + 1)

= (7 - 6 i)/(17)

= 1/ (17) (7 - 6 i)