How do you divide i+2i+7 in trigonometric form?

1 Answer
Jul 8, 2018

0260.18i

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=2i3,z2=7i

r1=22+12=5

θ1=tan1(12)=333.43, IV Quadrant

r2=72+(1)2=50

θ2=tan1(17)=303.69, IV Quadrant

z1z2=550(cos(333.43351.87)+isin(333.43351.87))

0260.18i