How do you divide ( i-3) / (2i+1)i32i+1 in trigonometric form?

1 Answer
Dec 17, 2017

See the explanation.

Explanation:

In trigonometric form,
i-3=sqrt(10)(cosalpha+isinalpha)i3=10(cosα+isinα), where
cosalpha=-3/sqrt(10), sinalpha=1/sqrt(10)cosα=310,sinα=110

2i+1=sqrt(5)(cosbeta+isinbeta)2i+1=5(cosβ+isinβ)
(cosbeta=1/sqrt(5), sinbeta=2/sqrt(5)cosβ=15,sinβ=25).

So,
(i-3)/(2i+1)=(sqrt(10)(cosalpha+isinalpha))/(sqrt(5)(cosbeta+isinbeta)i32i+1=10(cosα+isinα)5(cosβ+isinβ)
=sqrt(2)(cos(alpha-beta)+isin(alpha-beta))=2(cos(αβ)+isin(αβ)).

Then, use the trigonometric addition formulas.
cos(α-β)=cosαcosbeta+sinalphasinbeta
=-3/sqrt(10)*1/sqrt(5)+1/sqrt(10)*2/sqrt(5)
=-sqrt(2)/10

sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta
=1/sqrt(10)*1/sqrt(5)-(-3/sqrt(10))*2/sqrt(5)
=(7sqrt(2))/10

Therefore,
(i-3)/(2i+1)=sqrt(2){-sqrt(2)/10+i*((7sqrt(2))/10)}
=-1/5+7/5 i.