How do you divide i32i+4 in trigonometric form?

1 Answer
Jun 25, 2018

3i4+2i=12(1+i)

Explanation:

z1z2=(r1r2)((cos(θ1θ2)+isin(θ1θ2))

z1=3i,z2=4+2i

r1=32+12=10

θ1=tan1(13)=18.43=161.57, II quadrant

r2=42+22=20

θ2=tan1(24)=26.57, I quadrant

z1z2=1020(cos(161.5726.57)+i(161.5726.57))

3i4+2i=12(12+i12)=12(1+i)