How do you divide i+33i+7 in trigonometric form?

1 Answer
Feb 22, 2018

0.311+0.275i

Explanation:

First I will rewrite the expressions in the form of a+bi

3+i73i

For a complex number z=a+bi, z=r(cosθ+isinθ), where:

  • r=a2+b2
  • θ=tan1(ba)

Let's call 3+i z1 and 73i z2.

For z1:

z1=r1(cosθ1+isinθ1)

r1=32+12=9+1=10

θ1=tan1(13)=0.32c

z1=10(cos(0.32)+isin(0.32))

For z2:

z2=r2(cosθ2+isinθ2)

r2=72+(3)2=58

θ2=tan1(37)=0.40c

However, since 73i is in quadrant 4, we need to get a positive angle equivalent (the negative angle goes clockwise around the circle, and we need an anticlockwise angle).

To get a positive angle equivalent, we add 2π, tan1(37)+2π=5.88c

z2=58(cos(5.88)+isin(5.88))

For z1z2:

z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))

z1z2=1058(cos[tan1(13)(tan1(37)+2π)]+isin[tan1(13)(tan1(37)+2π)])

z1z2=14529(cos[tan1(13)tan1(37)2π]+isin[tan1(13)tan1(37)2π])

z1z2=14529(cos(5.56)+isin(5.56))

z1z2=14529cos(5.56)+i14529sin(5.56)

z1z2=0.311+0.275i

Proof:
3+i73i7+3i7+3i=(3+i)(7+3i)(73i)(7+3i)=21+7i+9i+3i249+21i21i9i2=21+16i+3i2499i2

i2=1

=21+16i349+9=18+16i58=929+829i0.310+0.275i