How do you divide i37i+3 in trigonometric form?

1 Answer

0.42(0.7475+i0.6643)

Explanation:

z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z1=i3,z2=3+i7

r1=1+32=10

θ1=tan1(13)=18.43=161.57, II Quadrant

r2=72+32=58

θ2=tan1(37)=23.2

z1z2=1058(cos(161.5723.2)isin(161.5723.2))

0.42(0.7475+i0.6643)