How do you divide ( -i+4) / (7i +5 )i+47i+5 in trigonometric form?

1 Answer

sqrt1258/74*[cos (tan^-1 ((-33)/13))+isin (tan^-1 ((-33)/13))]125874[cos(tan1(3313))+isin(tan1(3313))] OR

sqrt1258/74*[cos(-68.4986^@)+isin(-68.4986^@)]125874[cos(68.4986)+isin(68.4986)]

Explanation:

(-i+4)/(7i+5)=(4-i)/(5+7i)i+47i+5=4i5+7i

(4-i)/(5+7i)*(5-7i)/(5-7i)=(20-5i-28i-7)/(25+49)=(13-33i)/744i5+7i57i57i=205i28i725+49=1333i74

13/74-33/74i13743374i

Compute the magnitude rr ,let x=13/74x=1374 and y=(-33)/74y=3374

r=sqrt(x^2+y^2)=sqrt((13/74)^2+((-33)/74)^2)=sqrt1258/74r=x2+y2=(1374)2+(3374)2=125874

Compute the Argument phiϕ

phi=tan^-1 (y/x)=tan^-1 (((-33)/cancel74)/(13/cancel74))=tan^-1 ((-33)/13)

phi=-68.4986^@

so that

(-i+4)/(7i+5)=(4-i)/(5+7i)

(4-i)/(5+7i)=sqrt1258/74*[cos(-68.4986^@)+isin(-68.4986^@)]