Z= (9+i)/(-2+i) = ((9+i)(-2-i))/((-2+i)(-2-i)) Z=9+i−2+i=(9+i)(−2−i)(−2+i)(−2−i)
=(-18-11i-i^2)/((-2)^2-i^2) = (-17-11i)/(4+1) = -17/5-11/5i=−18−11i−i2(−2)2−i2=−17−11i4+1=−175−115i
= -3.4 -2.2i ; [i^2=-1]=−3.4−2.2i;[i2=−1]
Modulus |Z|=r=sqrt((-3.4)^2+ (-2.2)^2) =4.05 |Z|=r=√(−3.4)2+(−2.2)2=4.05 ;
tan alpha =b/a= (-2.2)/-3.4 = 0.647 :. alpha =tan^-1(0.647) = 0.574
theta is on 3rd quadrant :. theta= alpha+pi=0.574+pi= 3.72;
theta expressed in radian.
Argument : theta =3.72 :. In trigonometric form expressed as
r(cos theta=isintheta) = 4.05(cos 3.72+isin3.72) :.
(9+i)/(-2+i) = 4.05(cos 3.72+isin3.72) [Ans]