How do you divide ( -i-9) / (i-2)i9i2 in trigonometric form?

1 Answer
Jul 27, 2018

color(indigo)(=> 3.4 + 2.2 i, " I Quadrant"3.4+2.2i, I Quadrant

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = -9 - i, z_2 = 2 - iz1=9i,z2=2i

r_1 = sqrt(-9^2 + -1^2)^2) = sqrt 82r1=92+122)=82

theta_1 = tan ^-1 (-1/ -9) ~~ 186.3402^@ = , " III Quadrant"θ1=tan1(19)186.3402=, III Quadrant

r_2 = sqrt(2^2 + (-1)^2) = sqrt 5r2=22+(1)2=5

theta_2 = tan ^-1 (1/ -2) ~~ 153.4349^@, " II Quadrant"θ2=tan1(12)153.4349, II Quadrant

z_1 / z_2 = sqrt(82 / 5) (cos (186.3402 - 153.4349) + i sin (186.3402 - 153.4349))z1z2=825(cos(186.3402153.4349)+isin(186.3402153.4349))

color(indigo)(=> 3.4 + 2.2 i, " I Quadrant"3.4+2.2i, I Quadrant