How do you evaluate 2 e^( ( 3 pi)/8 i) - 5 e^( ( 19 pi)/8 i) using trigonometric functions?

1 Answer
Apr 26, 2018

:. 2 e^((3 pi)/8 i)- 5 e^((19 pi)/8 i) ~~-1.15 -2.77 i

Explanation:

2 e^((3 pi)/8 i)- 5 e^((19 pi)/8 i)

We know e^(i theta) = cos theta +i sin theta

(3 pi)/8 ~~ 1.178097 , (19 pi)/8 ~~ 7.461823

:. 2 e^((3 pi)/8i) = 2(cos ((3 pi)/8)+ i sin ((3 pi)/8))

=0.765367+ 1.847759 i

:. 5 e^((19 pi)/8 i) = 5(cos ((19 pi)/8)+ i sin ((19 pi)/8))

~~ 1.913417 + 4.619397 i

:. 2 e^((3 pi)/8 i)- 5 e^((19 pi)/8 i)

=(0.765367+ 1.847759 i)- (1.913417 + 4.619397 i)

=( -1.148050- 2.771638 i)

:. 2 e^((3 pi)/8 i)- 5 e^((19 pi)/8 i) ~~-1.15 -2.77 i (2 dp) [Ans]