How do you evaluate e^( ( 11 pi)/6 i) - e^( ( 17 pi)/12 i)e11π6ie17π12i using trigonometric functions?

1 Answer
Oct 30, 2016

e^(11pi/6i)-e^((17pi)/12i)=(2sqrt3+sqrt6-sqrt2)/4+i(sqrt2+sqrt6-2)/4e11π6ie17π12i=23+624+i2+624

Explanation:

Evaluating the expression is determined by using Euler's theorem

color(blue)(e^(ix)=cosx+isinx)eix=cosx+isinx

e^(11pi/6i)=color(blue)(cos(11pi/6)+isin(11pi/6)e11π6i=cos(11π6)+isin(11π6)
e^(11pi/6i)=cos((12pi)/6-pi/6)+isin((12pi)/6-pi/6)e11π6i=cos(12π6π6)+isin(12π6π6)
e^(11pi/6i)=cos(2pi-pi/6)+isin(2pi-pi/6)e11π6i=cos(2ππ6)+isin(2ππ6)
e^(11pi/6i)=cos(-pi/6)+isin(-pi/6)e11π6i=cos(π6)+isin(π6)

Applying the trigonometric identities:

color(green)(cos(-alpha)=cosalpha)cos(α)=cosα
color(green)(sin(-alpha)=-sinalpha)sin(α)=sinα

Let us continue computing e^((11pi)/6)e11π6

e^(11pi/6i)=cos(-pi/6)+isin(-pi/6)e11π6i=cos(π6)+isin(π6)
e^(11pi/6i)=color(green)(cos(pi/6))color(green)(-isin(pi/6))e11π6i=cos(π6)isin(π6)
e^(11pi/6i)=sqrt3/2-i1/2e11π6i=32i12

Let us compute e^((17pi)/12i)e17π12i

e^((17pi)/12i)=color(blue)(cos((17pi)/12)+isin((17pi)/12)e17π12i=cos(17π12)+isin(17π12)
e^((17pi)/12i)=cos((12pi)/12+(5pi)/12)+isin((12pi)/12+(5pi)/12)e17π12i=cos(12π12+5π12)+isin(12π12+5π12)
e^((17pi)/12i)=cos(pi+(5pi)/12)+isin(pi+(5pi)/12)e17π12i=cos(π+5π12)+isin(π+5π12)

Applying the trigonometric identities

color(brown)(cos(pi+alpha)=-cosalpha)cos(π+α)=cosα
color(brown)(sin(pi+alpha)=-sinalpha)sin(π+α)=sinα

Let us continue computing e^((17pi)/12i)e17π12i
e^((17pi)/12i)=cos(pi+(5pi)/12)+isin(pi+(5pi)/12)e17π12i=cos(π+5π12)+isin(π+5π12)
e^((17pi)/12i)=color(brown)(-cos((5pi)/12)color(brown)-isin((5pi)/12)e17π12i=cos(5π12)isin(5π12)
e^((17pi)/12i)=-(sqrt6-sqrt2)/4-i(sqrt2+sqrt6)/4e17π12i=624i2+64
e^((17pi)/12i)=(-sqrt6+sqrt2)/4-i(sqrt2+sqrt6)/4e17π12i=6+24i2+64

hint:To evaluate cos((5pi)/12) and sin((5pi)/12)cos(5π12)andsin(5π12)
cos((5pi)/12)=cos(pi/6+pi/4)cos(5π12)=cos(π6+π4)
sin((5pi)/12)=sin(pi/6+pi/4)sin(5π12)=sin(π6+π4)

So,

color(blue)(e^(11pi/6i)-e^((17pi)/12i)e11π6ie17π12i

=sqrt3/2-i1/2-((-sqrt6+sqrt2)/4-i(sqrt2+sqrt6)/4)=32i12(6+24i2+64)

=sqrt3/2-i1/2-((-sqrt6+sqrt2)/4)+i(sqrt2+sqrt6)/4=32i12(6+24)+i2+64

=sqrt3/2-i1/2+sqrt6/4-sqrt2/4+i(sqrt2+sqrt6)/4=32i12+6424+i2+64

=(2sqrt3)/4-(2i)/4+sqrt6/4-sqrt2/4+i(sqrt2+sqrt6)/4=2342i4+6424+i2+64

=(2sqrt3)/4+sqrt6/4-sqrt2/4+i(sqrt2+sqrt6)/4-(2i)/4=234+6424+i2+642i4

=(2sqrt3+sqrt6-sqrt2)/4+i(sqrt2+sqrt6-2)/4=23+624+i2+624