How do you evaluate e13π12ie13π2i using trigonometric functions?

1 Answer
Mar 22, 2016

Let us convert those complex numbers into their trigonometric forms.

Explanation:

Let us take the following equality:

eiθ=cosθ+isinθ

Thus:

e13π12i=cos(13π12)+isin(13π12)=
=1+322i3122=13i3+i22=
=(1+3)+i(13)22

In the same way:

e13π2i=cos(13π2)+isin(13π2)=
=0+i1=i

We sum it:

e13π12ie13π2i=(1+3)+i(13)22i=
=(1+3)+i(13)i2222=
=(1+3)+i(1322)22
0.971.26i

Tip: in the same way that we can write exponentials as trigonometric functions, we can write trigonometric functions as exponentials.

cosθ=eiθ+eiθ2

sinθ=eiθeiθ2i