How do you evaluate e^( ( 13 pi)/12 i) - e^( ( 3 pi)/2 i) using trigonometric functions?

1 Answer
Oct 14, 2016

-(1/2)sqrt(2+sqrt 3)+i(1-(1/2)sqrt(2-sqrt 3))

Explanation:

Use e^(pii)=-1 and e^(pi/2i)=i.

e^(13/12pi) i-e^(3/2pii)

=e^(pii)(e^(pi/6i)-e^(pi/2i))

=-(cos(pi/6)+i sin(pi/6)-i)

=-(sqrt((1+cos(pi/3))/2)+i(sqrt((1-cos(pi/3))/2)-i)

=-sqrt((1+sqrt3/2)/2)+i(1-sqrt((1-sqrt3/2)/2))

-(1/2)sqrt(2+sqrt 3)+i(1-(1/2)sqrt(2-sqrt 3))