How do you evaluate e13π8ie17π12i using trigonometric functions?

1 Answer
Mar 26, 2016

e13π8ie17π12i=0.0003+0.01142i#

Explanation:

As eiθ=cosθ+isinθ

e13π8i=cos(13π8)+isin(13π8)

= cos(13π82π)+isin(13π82π)

= cos(3π8)+isin(3π8)

= 0.999790.02056i (using scientific calculator)

Similarly e17π12i=cos(17π12)+isin(17π12)

= cos(17π122π)+isin(17π122π)

= cos(7π12)+isin(7π12)

= 0.999490.03198i (using scientific calculator)

Hence e13π8ie17π12i

= (0.999790.02056i)(0.999490.03198i)

= (0.999790.99949)(0.020560.03198)i

= 0.0003(0.01142)i

= 0.0003+0.01142i