How do you evaluate e^( ( 13 pi)/8 i) - e^( ( 3 pi)/2 i) using trigonometric functions?

1 Answer
Aug 1, 2018

color(chocolate)(=> 0.3827 + 0.0761 i , I Quadrant.

Explanation:

e^(i theta) = cos theta + i sin theta

e^(((13pi)/8) i )= cos ((13pi)/8) + i sin ((13pi)/8)

~~> 0.3827 - 0.9239 i , IV Quadrant

e^(((3pi)/2)i) = cos ((3pi)/2) + i sin ((3pi)/2)

=> - i, III Quadrant.

e^(((13pi)/8)i) - e^(((3pi)/2)i) = 0.3827 - 0.9239 i - -i

color(chocolate)(=> 0.3827 + 0.0761 i , I Quadrant.