How do you evaluate e13π8ie5π12i using trigonometric functions?

1 Answer
Jan 25, 2018

e13π8ie5π12i0.121.89i

Explanation:

We can represent aeix in trig form as aeix=a(cosx+isinx)

Using this for e13π8ie5π12i gives us:
(cos(13π8)+isin(13π8))(cos(5π12)+isin(5π12))

=cos(13π8)+isin(13π8)cos(5π12)isin(5π12))

=cos(13π8)cos(5π12)isin(5π12)+isin(13π8)

=(cos(13π8)cos(5π12))i(sin(5π12)sin(13π8))

0.1238643873i(1.889805359)

=0.12386438731.889805359i

0.121.89i