How do you evaluate e13π8ie7π12i using trigonometric functions?

1 Answer
Mar 28, 2016

e13π8ie7π12i=(0.6415+0.042i)

Explanation:

As eiθ=cosθ+isinθ, we have

e13π8i=cos(13π8)+isin(13π8) and

e7π12i=cos(7π12)+isin(7π12)

Hence, e13π8ie7π12i

= (cos(13π8)+isin(13π8))(cos(7π12)+isin(7π12))

As cos(13π8)=0.3827, sin(13π8)=0.9239,

cos(7π12)=0.2588 and sin(7π12)=0.9659

e13π8ie7π12i

= (0.3827+i(0.9239))((0.2588)+i(0.9659)

= (0.6415+0.042i)