How do you evaluate e13π8ie7π4i using trigonometric functions?

1 Answer
Feb 23, 2018

The answer is =(22222)i(2+2222)

Explanation:

Reminder :

Euler's relation

eiθ=cosθ+isinθ

Here, we have

z=e138πe74π=cos(138π)+isin(138π)cos(74π)isin(74π)

Therefore,

138π=58π+π=18π+32π

74π=34π+π

cos(14π)=12sin2(18π)=2cos2(18π)1

sin(18π)=1cos(14π)2=1222=222

cos(18π)=1+cos(14π)2=1+222=2+22#

So,
z=cos(18π+32π)+isin(18π+32π)cos(14π+π)isin(14π+π)

cos(18π+32π)=cos(18π)cos(32π)sin(18π)sin(32π)

=2+220222(1)=222

sin(18π+32π)=sin(18π)cos(32π)+cos(18π)sin(32π)

=2220+2+22(1)=2+22

cos(34π+π)=cos(34π)cos(π)sin(34π)sin(π)

=221220=22

sin(34π+π)=sin(34π)cos(π)+cos(34π)sin(π)

=221+220=22

Finally,

z=222i2+2222+i22

=(22222)i(2+2222)