Reminder :
Euler's relation
eiθ=cosθ+isinθ
Here, we have
z=e138π−e74π=cos(138π)+isin(138π)−cos(74π)−isin(74π)
Therefore,
138π=58π+π=18π+32π
74π=34π+π
cos(14π)=1−2sin2(18π)=2cos2(18π)−1
sin(18π)=√1−cos(14π)2=√1−√222=√2−√22
cos(18π)=√1+cos(14π)2=√1+√222=√2+√22#
So,
z=cos(18π+32π)+isin(18π+32π)−cos(14π+π)−isin(14π+π)
cos(18π+32π)=cos(18π)cos(32π)−sin(18π)sin(32π)
=√2+√22⋅0−√2−√22⋅(−1)=√2−√22
sin(18π+32π)=sin(18π)cos(32π)+cos(18π)sin(32π)
=√2−√22⋅0+√2+√22⋅(−1)=−√2+√22
cos(34π+π)=cos(34π)cos(π)−sin(34π)sin(π)
=−√22⋅−1−√22⋅0=√22
sin(34π+π)=sin(34π)cos(π)+cos(34π)sin(π)
=√22⋅−1+√22⋅0=−√22
Finally,
z=√2−√22−i√2+√22−√22+i√22
=(√2−√22−√22)−i(√2+√22−√22)