How do you evaluate e19π12ie3π4i using trigonometric functions?

1 Answer
Apr 9, 2016

0.363+0.686i

Explanation:

According to Euler's formula,

eix=cosx+isinx.

Substituting the different values for x in the question,

e19π12i=cos(19π12)+isin(19π12)
=cos285+isin285
=0.633+0.774i

e3π4i=cos(3π4)+isin(3π4)
=cos135+isin135
=0.996+0.088i

Using these values, the final answer is

e19π12ie3π4i`=0.633+0.774i+0.9960.088i
=0.363+0.686i