How do you evaluate e19π12ieπ4i using trigonometric functions?

1 Answer
May 19, 2016

e19π12eπ4=0.4483i1.673

Explanation:

e19π12i=cos(19π12)+isin(19π12) and eπ4i=cos(π4)+isin(π4)

Hence, e19π12eπ4=cos(19π12)+isin(19π12)cos(π4)isin(π4)

= cos(5π12)cos(π4)+i(sin(5π12)sin(π4))

= cos(5π12)12+i(sin(5π12)12)

= 0.25880.7071+i(0.96590.7071)

= 0.4483i1.673