How do you evaluate e23π12ie13π12i using trigonometric functions?

1 Answer
Apr 23, 2018

ei(23π12)ei(13π12)=6+22

Explanation:

ei(23π12)ei(13π12)

=e2πiei(23π12)eiπei(π12)

=ei(π12)+ei(π12)

=cos(π12)isin(π12)+cos(π12)+isin(π12)

=2cos(π12)

π12 is 15. We avoid the nested radical with the difference formula:

cos(π12)=cos(4530)=cos45cos30+sin45sin30=22(32+12)=6+24

ei(23π12)ei(13π12)=6+22