How do you evaluate e^( (3 pi)/2 i) - e^( (13 pi)/8 i) using trigonometric functions?

1 Answer
Jul 27, 2018

color(chocolate)(=> -0.3827 - 0.0761 i , IV Quadrant.

Explanation:

e^(i theta) = cos theta + i sin theta

e^(((3pi)/2) i )= cos ((3pi)/2) + i sin ((3pi)/2)

~~> - i, III Quadrant

e^(((13pi)/8)i) = cos ((13pi)/8) + i sin ((13pi)/8)

=> 0.3827 - 0.9239 i, IV Quadrant.

e^(((3pi)/2)i) - e^(((13pi)/8)i) = -0.3827 - i + 0.9239 i

color(chocolate)(=> -0.3827 - 0.0761 i , IV Quadrant.