How do you evaluate e^( (3 pi)/2 i) - e^( (5 pi)/3 i)e3π2ie5π3i using trigonometric functions?

1 Answer
Apr 9, 2016

1.006 + 0.824i1.006+0.824i

Explanation:

According to Euler's formula,

e^(ix) = cosx + isinxeix=cosx+isinx.

Using values for xx from the equation,

x = (3pi)/2x=3π2
e^((3pi)/2i) = cos((3pi)/2) + isin((3pi)/2)e3π2i=cos(3π2)+isin(3π2)
= cos270 + isin270=cos270+isin270
= 0.984 - 0.176i=0.9840.176i

x = (5pi)/3x=5π3
e^((5pi)/3i) = cos((5pi)/3) + isin((5pi)/3)e5π3i=cos(5π3)+isin(5π3)
= cos300 + isin300=cos300+isin300
= - 0.022 - i=0.022i

Inserting these two values into the equation above,

e^((3pi)/2i) - e^((5pi)/3i) = 0.984 - 0.176i + 0.022 + ie3π2ie5π3i=0.9840.176i+0.022+i
= 1.006 + 0.824i=1.006+0.824i