How do you evaluate e3π2ieπ12i using trigonometric functions?

1 Answer
Jun 10, 2016

e3π2ieπ12i=(1+cos(π12))+isin(π12)

Explanation:

We can write eiθ=cosθ+isinθ

Hence e3π2ieπ12i

= [cos(3π2)+isin(3π2)][cos(π12)+isin(π12)]

But cos(3π2)=0 and sin(3π2)=1

Hence e3π2ieπ12i

= [01][cos(π12)+isin(π12)]

= (1+cos(π12))+isin(π12)