How do you evaluate e^( (3 pi)/2 i) - e^( ( pi)/3 i)e3π2i−eπ3i using trigonometric functions?
1 Answer
Feb 26, 2017
Use Euler's identity:
e^(ix) = cosx + isinxeix=cosx+isinx
Thus:
e^((3pi)/2i) - e^(pi/3i)e3π2i−eπ3i
= cos((3pi)/2) + isin((3pi)/2) - (cos(pi/3) + isin(pi/3))=cos(3π2)+isin(3π2)−(cos(π3)+isin(π3))
= cancel(cos((3pi)/2))^(0) + isin((3pi)/2) - cos(pi/3) - isin(pi/3)
= -i - 1/2 - sqrt3/2i
= color(blue)(-1/2 + (-1 - sqrt3/2)i)
So, for the form