How do you evaluate e3π2ieπ8i using trigonometric functions?

1 Answer
Dec 24, 2017

The answer is =122+2i222i

Explanation:

Apply Euler's Identity

eiθ=cosθ+isinθ

cos2θ=2cos2θ1, , cosθ=cos2θ+12

cos2θ=12sin2θ,, sinθ=1cos2θ2

Therefore,

e32πie18πi=cos(32π)+isin(32π)cos(18π)isin(18π)

cos(18π)=(cos(π4))+12=122+2

sin(18π)=(1cos(π4))2=1222

cos(32π)=0

sin(32π)=1

So,

e32πie18πi=0i122+2i1222