How do you evaluate e^( ( 5 pi)/4 i) - e^( ( 17 pi)/12 i) using trigonometric functions?

1 Answer
Jul 6, 2017

The answer is =(sqrt6-3sqrt2)/4-i(sqrt6-sqrt2)/4

Explanation:

We need

cos(a+b)=cosacosb-sinasinb

sin(a+b)=sinacosb+sinbcosa

sin(pi/4)=cos(pi/4)=sqrt2/2

cos(pi/6)=sqrt3/2

sin(pi/2)=1/2

We apply Euler's Formula

e^(ix)=cosx+isinx

e^(5/4pii)=cos(5/4pi)+isin(5/4pi)

=-cos(1/4pi)-isin(1/4pi)

=-sqrt2/2-isqrt2/2

e^(17/12pii)=cos(17/12pi)+isin(17/12pi)

=cos(15/12pi+2/12pi)+isin(15/12pi+2/12pi)

=cos(5/4pi)cos(1/6pi)-sin(5/4pi)sin(1/6pi)+i(sin(5/4pi)cos(1/6pi)+cos(5/4pi)sin(1/6pi))

=-sqrt2/2*sqrt3/2+sqrt2/2*1/2+i(-sqrt2/2*sqrt3/2-sqrt2/2*1/2)

=(sqrt2-sqrt6)/4+i(-sqrt6-sqrt2/4)

Therefore,

e^(5/4pii)-e^(17/12pii)=-sqrt2/2-isqrt2/2-((sqrt2-sqrt6)/4+i(-sqrt6-sqrt2)/4)

=(sqrt6-3sqrt2)/4-i(sqrt6-sqrt2)/4