We need
cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
sin(pi/4)=cos(pi/4)=sqrt2/2
cos(pi/6)=sqrt3/2
sin(pi/2)=1/2
We apply Euler's Formula
e^(ix)=cosx+isinx
e^(5/4pii)=cos(5/4pi)+isin(5/4pi)
=-cos(1/4pi)-isin(1/4pi)
=-sqrt2/2-isqrt2/2
e^(17/12pii)=cos(17/12pi)+isin(17/12pi)
=cos(15/12pi+2/12pi)+isin(15/12pi+2/12pi)
=cos(5/4pi)cos(1/6pi)-sin(5/4pi)sin(1/6pi)+i(sin(5/4pi)cos(1/6pi)+cos(5/4pi)sin(1/6pi))
=-sqrt2/2*sqrt3/2+sqrt2/2*1/2+i(-sqrt2/2*sqrt3/2-sqrt2/2*1/2)
=(sqrt2-sqrt6)/4+i(-sqrt6-sqrt2/4)
Therefore,
e^(5/4pii)-e^(17/12pii)=-sqrt2/2-isqrt2/2-((sqrt2-sqrt6)/4+i(-sqrt6-sqrt2)/4)
=(sqrt6-3sqrt2)/4-i(sqrt6-sqrt2)/4