How do you evaluate e5π4ie19π12i using trigonometric functions?

1 Answer
Jun 3, 2016

=122((3+1)i(31))

Explanation:

e5π4ie19π12i

=[cos(5π4)+isin(5π4)][cos(19π12)+isin(19π12)]

=[cos(5π4)cos(19π12)]i[sin(19π12)sin(5π4)]

=[cos(15π12)cos(19π12)]i[sin(19π12)sin(15π12)]

=[2sin(17π12)sin(2π12)]i[2cos(17π12)sin(2π12)]

=[2sin(17π12)×12]i[2cos(17π12)×12]

=sin(17π12)icos(17π12)

Now

  • sin(17π12)=12(1cos(17π6))=12(1cos(3ππ6))
    =12(1+cos(π6))=12(1+cos(π6))

=2+34=4+238=3+122

and

  • cos(17π12)=12(1+cos(17π6))=12(1+cos(3ππ6))

=12(1cos(π6))=12(1cos(π6))

=234=4238=3122

Hence

e5π4ie19π12i

=sin(17π12)icos(17π12)

=122((3+1)i(31))