e5π4i−e3π8i
Euler formula : eiθ=cos(θ)+isin(θ)
e5π4i=cos(5π4)+isin(5π4)
e3π8i=cos(3π8)+isin(3π8)
e5π4i−e3π8i
=cos(5π4)+isin(5π4)−(cos(3π8)+isin(3π8))
=cos(5π4)−cos(3π8)+i(sin(5π4)−sin(3π8))
cos(C)−cos(D)=2cos(C+D2)cos(C−D2)
sin(C)−sin(D)=2cos(C+D2)sin(C−D2)
cos(5π4)−cos(3π8)=2cos(5π4+3π82)cos(5π4−3π82)
cos(5π4)−cos(3π8)=2cos(12(10π8+3π8))cos((12(10π8−3π8))
cos(5π4)−cos(3π8)=2cos(12(13π8)cos((12(7π8))
cos(5π4)−cos(3π8)=2cos(13π16)cos(7π16)
sin(5π4)−sin(3π8)=2cos(12(5π4+3π8)sin(12(5π4−3π8))
sin(5π4)−sin(3π8)=2cos(12(10π8+3π8)sin(12(10π8−3π8))
sin(5π4)−sin(3π8)=2cos(12(13π8)sin(12(7π8))
sin(5π4)−sin(3π8)=2cos(13π16)sin(7π16)
e5π4i−e3π8i
=cos(5π4)−cos(3π8)+i(sin(5π4)−sin(3π8))
=2cos(13π16)cos(7π16)+i(2cos(13π16)sin(7π16))
=2cos(13π16){cos(7π16)+isin(7π16)}