How do you evaluate e5π4ie3π8i using trigonometric functions?

1 Answer

2cos(13π16){cos(7π16)+isin(7π16)}

Explanation:

e5π4ie3π8i

Euler formula : eiθ=cos(θ)+isin(θ)

e5π4i=cos(5π4)+isin(5π4)
e3π8i=cos(3π8)+isin(3π8)

e5π4ie3π8i
=cos(5π4)+isin(5π4)(cos(3π8)+isin(3π8))
=cos(5π4)cos(3π8)+i(sin(5π4)sin(3π8))

cos(C)cos(D)=2cos(C+D2)cos(CD2)

sin(C)sin(D)=2cos(C+D2)sin(CD2)

cos(5π4)cos(3π8)=2cos(5π4+3π82)cos(5π43π82)
cos(5π4)cos(3π8)=2cos(12(10π8+3π8))cos((12(10π83π8))
cos(5π4)cos(3π8)=2cos(12(13π8)cos((12(7π8))
cos(5π4)cos(3π8)=2cos(13π16)cos(7π16)

sin(5π4)sin(3π8)=2cos(12(5π4+3π8)sin(12(5π43π8))
sin(5π4)sin(3π8)=2cos(12(10π8+3π8)sin(12(10π83π8))
sin(5π4)sin(3π8)=2cos(12(13π8)sin(12(7π8))
sin(5π4)sin(3π8)=2cos(13π16)sin(7π16)

e5π4ie3π8i
=cos(5π4)cos(3π8)+i(sin(5π4)sin(3π8))
=2cos(13π16)cos(7π16)+i(2cos(13π16)sin(7π16))
=2cos(13π16){cos(7π16)+isin(7π16)}