How do you evaluate e^( ( 5 pi)/4 i) - e^( ( 7 pi)/4 i)e5π4ie7π4i using trigonometric functions?

1 Answer
Oct 17, 2016

e^((5ipi)/4)-e^((7ipi)/4)=-sqrt2e5iπ4e7iπ4=2

Explanation:

Use the definition e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ
e^((5ipi)/4)=cos((5pi)/4)+isin((5pi)/4)e5iπ4=cos(5π4)+isin(5π4)
e^((7ipi)/4)=cos((7pi)/4)+isin((7pi)/4)e7iπ4=cos(7π4)+isin(7π4)
cos((5pi)/4)=-sqrt2/2cos(5π4)=22
cos((7pi)/4)=sqrt2/2cos(7π4)=22
sin((7pi)/4)=-sqrt2/2sin(7π4)=22
sin((5pi)/4)=-sqrt2/2sin(5π4)=22
The result is
e^((5ipi)/4)-e^((7ipi)/4)=cos((5pi)/4)+isin((5pi)/4)-(cos((7pi)/4)+isin((7pi)/4))e5iπ4e7iπ4=cos(5π4)+isin(5π4)(cos(7π4)+isin(7π4))
e^((5ipi)/4)-e^((7ipi)/4)=-sqrt2/2-isqrt2/2-sqrt2/2+isqrt2/2e5iπ4e7iπ4=22i2222+i22
So the final answer is
e^((5ipi)/4)-e^((7ipi)/4)=-sqrt2e5iπ4e7iπ4=2