How do you evaluate e7π4ie11π6i using trigonometric functions?

1 Answer
Mar 23, 2016

e7π4ie11π6i=0.1590.207i

Explanation:

eiθ=cosθ+isinθ

e7π4i=cos(7π4)+isin(7π4)

e11π6i=cos(11π6)+isin(11π6)

e7π4ie11π6i=[cos(7π4)+isin(7π4)][cos(11π6)+isin(11π6)]

e7π4ie11π6i=[cos(7π4)cos(11π6)]+i[sin(7π4)sin(11π6)]

e7π4ie11π6i=0.1590.207i