How do you evaluate e7π4ie19π12i using trigonometric functions?

1 Answer
Nov 27, 2016

In complex terms, R(sinθ+icosθ)= Reiθ
where R is the modulus and θ is the argument.

So
e7π4ie19π12i = 1(sin(7π)4+icos(7π)4)
- 1(sin(19π)12+icos(19π)12)

= sin(7π)4+icos(7π)4
- sin(19π)12+icos(19π)12