How do you evaluate e^( ( 7 pi)/4 i) - e^( ( 2 pi)/3 i)e7π4ie2π3i using trigonometric functions?

1 Answer
Jan 29, 2018

e^((7pi)/4i) - e^((2pi)/3i) = 1/2+sqrt(2)/2+i{-sqrt(2)/2 - sqrt(3)/2} e7π4ie2π3i=12+22+i{2232}

Explanation:

For convenience, Let us denote the sum by:

S =e^((7pi)/4i) - e^((2pi)/3i) S=e7π4ie2π3i

We know from Euler's Formula , that:

e^(i theta) = costheta+isintheta eiθ=cosθ+isinθ

And so we can represent the sum in trigonometric form by:

S = (cos((7pi)/4)+isin((7pi)/4)) - (cos((2pi)/3)+isin((2pi)/3)) S=(cos(7π4)+isin(7π4))(cos(2π3)+isin(2π3))

\ \ = cos((7pi)/4)-cos((2pi)/3)+i{sin((7pi)/4) - sin((2pi)/3)}

\ \ = sqrt(2)/2-(-1/2)+i{-sqrt(2)/2 - sqrt(3)/2}

\ \ = 1/2+sqrt(2)/2+i{-sqrt(2)/2 - sqrt(3)/2}