How do you evaluate e7π4ie4π3i using trigonometric functions?

1 Answer
Aug 6, 2017

e7π4ie4π3i=1+22+i(2+32)

Explanation:

eix=cosx+isinx

Here, we have e7π4ie4π3i=cos(7π4)+isin(7π4)(cos(4π3)+isin(4π3))=cos(7π4)+isin(7π4)cos(4π3)isin(4π3)

cos(7π4)=22
sin(7π4)=22
cos(4π3)=12
sin(4π3)=32

Therefore, e7π4ie4π3i=22i22+12+i32=1+22+i(2+32)