We apply Euler's formula
e^(i x)=cosx +i sinx
So,
e^(7/4pi i)-e^(5/12pi i)=
cos(7/4pi)+isin(7/4pi)-cos(5/12pi)-isin(5/12pi)
We calculate separately
cos(7/4pi)=cos(pi+3/4pi)=cos(pi)cos(3/4pi)-sin(pi)sin(3/4pi)
=-1*-sqrt2/2-0=sqrt2/2
sin(7/4pi)=sin(pi+3/4pi)=sin(pi)cos(3/4pi)+sin(3/4pi)cos(pi)
=0+sqrt2/2*-1=-sqrt2/2
cos(5/12pi)=cos(3/12pi+2/12pi)=cos(1/4pi+1/6pi)=cos(1/4pi)cos(1/6pi)-sin(1/4pi)sin(1/6pi)
=sqrt2/2*sqrt3/2-sqrt2/2*1/2=1/4(sqrt6-sqrt2)
sin(5/12pi)=sin(3/12pi+2/12pi)=sin(1/4pi)cos(1/6pi)+sin(1/6pi)cos(1/4pi)
=sqrt2/2*sqrt3/2+sqrt2/2*1/2=1/4(sqrt6+sqrt2)
e^(7/4pi i)-e^(5/12pi i)=(sqrt2/2-1/4(sqrt6-sqrt2))-i(sqrt2/2+1/4(sqrt6+sqrt2))
=1/4(3sqrt2-sqrt6)+i(1/4(3sqrt2+sqrt6))