How do you evaluate e7π4ie5π3i using trigonometric functions?

1 Answer
Aug 19, 2017

The answer is =(2232)i(22+32)

Explanation:

We apply Euler's formula

eix=cosx+isinx

So,

e74πie53πi=

cos(74π)+isin(74π)cos(53π)isin(53π)

We calculate separately

cos(74π)=cos(π+34π)=cos(π)cos(34π)sin(π)sin(34π)

=1220=22

sin(74π)=sin(π+34π)=sin(π)cos(34π)+sin(34π)cos(π)

=0+221=22

cos(53π)=cos(π+23π)=cos(π)cos(23π)sin(π)sin(23π)

=1320=32

sin(53π)=sin(π+23π)=sin(π)cos(23π)+sin(23π)cos(π)

=0+321=32

e74πie53πi=(2232)i(22+32)